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Abstract 

 

This paper will presents examples of proofs from the mathematics curriculum 

and discusses their role in conveying mathematical knowledge.. Educators 

have long recognized the explanatory value of many proofs, but they have had 

in mind primarily the light such explanatory proofs can shed on the 

mathematical subject matter with which they deal. This paper aims to show 

that proofs can also be bearers of mathematical knowledge in the classroom in 

another sense. The author will present an logically approach to prove 

mathematical problems in the learning process. This paper provide two 

examples of cases; algebra and geometry problems. In both cases, the author 

describes a method so that students are able to understand the problem with 

ease. So that students no longer have to memorize formulas so complicated 

anymore. 

 

Keywords: Proof, learning process, logically approach. 

 

 

1. INTRODUCTION 

The difficulties of pupils experience in arithmetic may be traced to a variety of 

causes. Numerous studies have been conducted which reveal certain of the typical 

errors and difficulties pupils encounter in arithmeticMathematics is often considered 

as a study of arithmeti. These studies have led some teachers of arithmetic to attempt 

to improve their teaching procedures (Horn, 1941). Other investigations have shown 

that inadequate study habits, rather than failure to master subject matter, are often the 

cause of failure to achieve in arithmetic, and that it is necessary to pay as much 

attention to the development of effective study habits as to the procedure for 

presentation of instructional materials (Morton, 1953). Further, it now appears that 

there is not much transfer of learning from one situation to another - while many 

things are learned simultaneously, every one of these learnings must be oriented 

toward the needs, interests, and problems of the learner. 
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Mathematics also referred as a deductive science. This means that the process must be 

deductive mathematical. Math does not accept generalizations based on observation 

(inductive), but should be based on deductive proof. Although to help thinking, in the 

early stages we often need the help of specific examples or illustrations of geometric. 

It should also note that both the content and method of searching for the truth in 

mathematics is different from the natural sciences, especially with science in general. 

Methods used by the search for truth that mathematics is a deductive science, whereas 

by natural science is inductive/experiment. But in mathematics, the search for truth 

can be started by way of inductive, but further generalization is right for a state must 

be proven deductively. In mathematics, a generalization, natural sciences, theory or 

proposition that can not be accepted as true before it can be proven deductively. 

 

 

2. DEDUCTIVE APPROACH  

Wilson (2007) said that a deductive approach is concerned with developing a 

hypothesis (or hypotheses) based on existing theory, and then designing a research 

strategy to test the hypothesis. 

The deductive approach can be explained by the means of hypotheses, which can be 

derived from the propositions of the theory. In other words, deductive approach is 

concerned with deducting conclusions from premises or propositions. Deduction 

begins with an expected pattern that is tested against observations, whereas induction 

begins with observations and seeks to find a pattern within them, Babbie (2010). 

It has been stated that “deductive means reasoning from the particular to the general. 

If a causal relationship or link seems to be implied by a particular theory or case 

example, it might be true in many cases. A deductive design might test to see if this 

relationship or link did obtain on more general circumstances” (Gulati, 2009). 

In other words, when a deductive approach is being followed in the research the 

author formulates a set of hypotheses that need to be tested. Then, through 

implementation of relevant methodology the study is going to prove formulated 

hypotheses right or wrong. 

 

 
 

In meanwhile, Beiske (2007) informs that deductive research approach explores a 

known theory or phenomenon and tests if that theory is valid in a given 

circumstances. “The deductive approach follows the path of logic most closely. The 

reasoning starts with a theory and leads to a new hypothesis. This hypothesis is put to 

the test by confronting it with observations that either lead to a confirmation or a 

rejection of the hypothesis” (Snieder and Larner, 2009). 

 

Theory Hypothesis Observation
Confirmation/

Rejection
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3. PROOFING IN TEACHING PROCESS 
Proof and its teaching have been extensively discussed for the last two decades in the 

literature on mathematics education and in particular in the proceedings of the 

International Group for the Psychology of Mathematics (Mariotti 2006). But Rav’s 

(Rav 1999) specific idea, that proof is a bearer of mathematical knowledge, has not 

been explicitly discussed. The research on proof in mathematics education seems to 

have dealt primarily with the logical aspects of proof and with the problems 

encountered in having students follow deductive arguments. 

These areas of emphasis are apparent from the specific issues addressed in much of 

this recent research. The following is by no means an exhaustive list of issues, but is 

fairly representative: The epistemological aspects of proof (Balacheff 2004; Hanna 

1997); the cognitive aspects of proof (Tall 1998); the role of intuition and schemata in 

proving (Fischbein 1982, 1999); the relationship between proving and reasoning 

(Yackel and Hanna 2003; Maher and Martino 1996); the usefulness of heuristics for 

the teaching of proof (Reiss and Renkl 2002); the emphasis on the logical structures 

of proofs in teaching at the tertiary level (Selden and Selden 1995); proof as 

explanation and justification (Hanna 1990, 2000; Sowder and Harel 2003); proof and 

hypotheses (Jahnke 2007); curricular issues (Hoyles 1997); proof in the context of 

dynamic software (Jones et al. 2000; Moreno and Sriraman 2005); the analysis of 

mathematical arguments produced by students (Inglis et al. 2007); the relationship 

between argumentation and proof (Pedemonte 2007). Understandably, the empirical 

classroom research on the teaching of proof has focused upon students’ difficulties 

with learning proof and on the design of effective teachers’ interventions (see the 

survey of research in the last 30 years in Mariotti 2006). 

There are some exceptions to the emphases mentioned above. Lucast (2003) presents 

a case for “Proof as method: a new case for proof in mathematics curricula,” in which 

it is argued that “proof is valuable in the school curriculum because it is instrumental 

in the cognitive processes required for successful problem solving” (p. 1). Lucast 

maintains that proof and problem solving are largely the same process and that both 

lead to “understanding,” and her emphasis is on models of problem solving and their 

bearing on justification. The present paper, on the other hand, aims to show that in 

mathematics education a proof can be used to teach mathematical methods and 

strategies. 

Bell (1976) and de Villiers (1990) discussed various meanings and functions of proof. 

De Villiers (1990, p. 18) listed five functions that he described as “… a slight 

expansion of Bell’s (1976) original distinction between the functions of verification, 

illumination and systematization.” These functions are (bold and italics in the source): 

“(1) verification (concerned with the truth of a statement), (2) explanation (providing 

insight into why it is true), (3) systematization, (the organization of various results 

into a deductive system of axioms, major concepts and theorems), (4) discovery (the 

discovery or invention of new results) and (5) communication (the transmission of 

mathematical knowledge).” This list stopped short of stating that proof contains 

techniques and strategies useful for problem solving, as Rav claims. 

The following two examples deal with proofs that are common to most secondary-

school mathematics curricula around the world. They are presented as case studies, in 
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which the proofs have been annotated extensively to demonstrate that they do have 

the capacity to expand the students’ toolbox of techniques and strategies for problem 

solving. 

 

 

4. PROBLEM 

One of the major criticisms of the traditional curriculum is that students learn to do 

mathematics by rote, by memorizing procedures and proofs. It is the contention of the 

advocates of the modern mathematics curriculum that when the subject is taught 

logically, when the reasoning behind steps is revealed, students will no longer have to 

rely upon rote learning. They will understand the mathematics. The logical approach 

is, in other words, also the pedagogical approach and the panacea for the difficulties 

students have had in learning mathematics. 

Just what does the logical approach mean? Basically it is the one commonly used in 

the traditional curriculum to teach high school geometry. That is, one starts with 

definitions and axioms and proves conclusions, called theorems, deductively. Though 

this approach has been used in geometry, it has not been used in the teaching of 

arithmetic, algebra, and trigonometry. Hence, so far as this feature of the new 

curriculum is concerned, the major change is in these latter subjects. Let us see what 

the deductive approach to arithmetic and algebra entails. 

 

4.1. Case I: The Quadratic Formula 
While students at school get exposed to very few “theorems,” particularly in areas 

other than geometry, they nevertheless have to learn a few formulae, which are 

essentially statements of results. An example of this is the formula for the solution of 

a quadratic equation. 

The solutions of the quadratic equation 

𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 where  𝑎 ≠ 0,  are given by 𝑥 =
−𝑏±√𝑏2−4𝑎𝑐

2𝑎
 

 

At the most basic level, the students may simply use this formula to solve particular 

quadratic equations. It is even possible for them to apply it blindly, not realizing that 

they can check their solutions by substituting back into the equation. However, if they 

do make such substitutions, then, on empirical grounds, they will undoubtedly come 

to trust it and apply it mechanically. 

At this point, students may perceive that there are two independent methods of 

solving quadratic equations, one, factoring, that is not guaranteed of success, and the 

other, use of the formula, which will work all of the time. 

One way to establish the formula is to substitute the values of x given by the formula 

and verify that they do indeed satisfy the quadratic equation. This is a legitimate 

proof, but does it leave anything to be desired? On the plus side of the ledger, it 

emphasizes what the formula actually delivers: values of the variable that satisfy the 

equation. On the minus side, apart from the messiness of the substitution, how likely 

is it that students will be able to apply it flexibly and reliably? There is no indication 

of the significance of the formula, how such a complicated expression might arise, 
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and how it might fit in with other properties and applications of the quadratic and 

related functions. The formula is a black box. Simply verifying that the formula works 

has another defect: We do not know that it yields the only solutions of the quadratic 

equation. There may be other numbers that satisfy it, and perhaps we may come 

across a situation in which these alternatives are what we want. 

An actual discussion of how the formula is obtained leads us to questions of strategy. 

In the present case, we might frame the question differently. Instead of asking, “What 

is a formula for the solutions of a quadratic equation?” we ask, “How can we solve a 

quadratic equation?” The second question induces us to think about process rather 

than product, and to consider how we might start.  

For example, we might ask whether there are quadratic equations that are easy to 

solve. There are two possible answers that we might give. First, we can solve 

equations when the quadratic is factorable into linear polynomials. Secondly, we can 

solve quadratic equations of the form 𝑥2 = 𝑘, when 𝑘 is positive; indeed, in this case 

the answer is: 𝑥 = ± 𝑘 . Is there any way we can reduce the problem of solving a 

general quadratic to either of these cases? We note that in fact these are related; the 

equation 𝑥2 = 𝑘 can be converted to 0 = 𝑥2 −  𝑘 = (𝑥 − 𝑘)(𝑥 + 𝑘). (Note: It may be 

necessary in some circumstances to satisfy students that 𝑥2 = 𝑘 has only these two 

solutions. This might be done by considering the monotonicity of the function 𝑥2 or 

by appealing to the fact that the product of two nonzero quantities cannot vanish. 

Either way inducts students into the underlying structure.)  

Most students will probably not know how to proceed from here on their own, and 

will have to be taught the technique of completing the square. But such considerations 

will inform the technique when it is presented. What makes it easy to solve 𝑥2 − 𝑘 =
0 is the absence of the linear term, and so we need to perform a gambit in effect to 

absorb the linear term in the general equation. The key recognition is that 𝑎𝑥2 +

𝑏𝑥 can be rewritten as 𝑎(𝑥2 +
𝑏

𝑎
𝑥 ) and that the quantity in parenthesis comprises the 

first two terms in the expansion of (𝑥 +
𝑏

2𝑎
)

2

 and differs from this expansion by a 

constant, namely, 
𝑏2

4𝑎2. Thus we “complete the square”; add a term on the left side to 

give us the square of a linear polynomial, and then subtract it again, in effect adding 

0. When ≠ 0 , we transform 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 to: 

 

𝑥2 +
𝑏

𝑎
𝑥 +

𝑏2

4𝑎2
= −

𝑐

𝑎
+

𝑏2

4𝑎2
 

 

𝑥2 +
𝑏

𝑎
𝑥 +

𝑏2

4𝑎2
= −

4𝑎𝑐

4𝑎2
+

𝑏2

4𝑎2
 

 

(𝑥 +
𝑏

2𝑎
)

2

=
𝑏2 − 4𝑎𝑐

4𝑎2
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and finally arrive at the formula: 

𝑥 =
−𝑏 ± √𝑏2 − 4𝑎𝑐 

2𝑎
 

where 𝑎 ≠ 0. 

 

This may be the first time that secondary school students see this general technique of 

adding and then subtracting a term in an expression, a useful technique that they will 

see frequently as they advance their study of mathematics. We note here that 

completing the square does not stem logically from a previous statement or axiom. 

Rather it is a topic specific move and an additional mathematical tool for the students 

to use in other similar situations. 

 

By adding this technique to their toolkit, students may be able to take advantage of 

situations where it is more efficient to use this technique rather than to simply apply 

the formula. For example, given the task of solving 𝑥2 − 8𝑥 − 48 = 0 , and not 

recognizing a factorization, the student could just as easily render the equation as 

(𝑥 − 4)2 − 64 = 0 as apply the formula. 

 

Having explicitly identified the ingredients of the situation, we can play around with 

them. Both factoring quadratics and using the formula lead to solutions of the 

equation. But we can use the formula also to obtain a factorization for any quadratic, 

even if the coefficients have to be non-integers. Since students going on in 

mathematics will inevitably meet situations, other than solving equations, in which 

factoring a polynomial is desirable, we have to be sensitive to possible procedures for 

this. Even more useful than the formula itself is the strategy – completing the square. 

 

The following example will illustrate. 

Consider the quartic polynomial: 𝑥4 + 4 

 

Is this factorable over the integers? It is not obvious that it is. However, if students 

have been able to absorb the essence of the square-completion technique, then some 

might be able to complete the square in a different way to get 

 

(𝑥4 + 4𝑥2 + 4)– 4𝑥2 = (𝑥2 + 2)2– (2𝑥)2 = (𝑥2– 2𝑥 + 2)(𝑥2 + 2𝑥 + 2) 
 

There is the possibility of students being able to leap ahead in the curriculum. The 

equation 𝑥4 + 4 = 0 would normally require some knowledge of complex numbers 

and roots of unity to solve; however, from the above factorization as a product of 

quadratics, even a student in the lower secondary grades would be able to generate a 

solution. 

 

We might also ask, if we can complete the square, why not complete the cube, and 

apply an analogous technique to solving 

𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 = 0 
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The left side can be written as 

𝑎 (𝑥 +
𝑏

3𝑎
)

3

+ (𝑐 −
𝑏2

3𝑎
) 𝑥 + (𝑑 −

𝑏3

27𝑎3
) = 0 

 

In this way, we can reduce the problem of solving any cubic to solving cubics of the 

form 𝑥3 − 𝑝𝑥 + 𝑞 = 0 , which is the usual starting point for general methods of 

solving the cubic. In a similar way, we can arrive at 𝑥4 + 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 as a 

“canonical form” for equations of the fourth degree. 

 

If we follow the invitation of the proof to consider equations of the third and fourth 

degrees, we realize that we have developed means of expressing the roots in terms of 

the coefficients, using the four arithmetic operations along with the extraction of 

square and cube roots. It is a natural question to ask whether the solutions of higher 

degree equations are attainable from the arithmetic operations and extraction of roots 

of any order applied to the coefficients.  

 

Delving into the proof reinforces an important perception that students should have 

about algebra. In any algebraic quest, we are in the business of reading off 

information from an expression. Sometimes the information can be easily read off, 

and sometimes it is buried and needs to be brought to light. The purpose of algebraic 

manipulation is to cast an expression into a form in which the desired information can 

be drawn. In the case of a quadratic, we have the standard form in descending powers 

of the variable, the factored form as a product of linear factors and the completion of 

the square. The factored form allows us to immediately read off its roots. When we 

use the completion of the square form, as shown above, while we need an additional 

step to solve the equation, we can see right away where the quadratic polynomial 

assumes its maximum or minimum value and exactly what that value is. In fact, we do 

also get some information about the roots as well. If both 𝑎 and 4𝑎𝑐 − 𝑏2 are positive, 

for example, then we can see that the quadratic is positive for all real values of x and 

so has no real roots. 

 

Thus we see that consideration of the proof has benefits that go far beyond the mere 

validation of a formula. In the present case, we gain the perception of reducing the 

general situation to a canonical type, the understanding of how the character of the 

roots depends on the coefficients, the certainty that the quadratic equation can have no 

more that two roots. More importantly from the point of view of this paper, we gain 

the knowledge of a technique whose range of applicability is wider than the situation 

at hand, and a broader knowledge of quadratics that can be knitted into a more 

comprehensive whole. 

 

4.2. Case II: Does An Angle Inscribed in a Semi-circle is a Right Angle ? 

The various proofs of this theorem will highlight the mathematical knowledge they 

contain. In addition, they show mathematical results as markers on a path, ways of 

giving form to a mathematical journey. A proof tells us where a mathematical result 
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lives, about its neighborhood and associates; it highlights the significant ideas that 

underlie it. 

 

Proposition. Let A and B be opposite ends of the diameter of a circle and let C be a 

point on its circumference. Then angle ACB is right. 

 

This geometric result is familiar to many high school students. Although it is simply 

stated, there are many dimensions to it and the mere statement of the result will 

inevitably fail to convey its richness. As with any geometric result, certain properties 

are highlighted for consideration and related; the posited relationship might seem 

quite mysterious and incomprehensible. In order to feel more at home and perceive 

that the result is somehow natural, it is desirable to probe deeply and sense how the 

mathematical structure is woven together. This particular result can be approached 

from many directions (Barbeau 1988), and the purpose of what follows is to comment 

on the mathematical content of some of these. 

 

The standard argument makes the observation that with O the centre of the circle, OA, 

OB and OC are all equal and so we have some equal angles in isosceles triangles and 

draw the conclusion that the angle at C is the sum of the angles at A and B, and so is 

equal to 90°. This argument highlights the significance of the circle hypothesis – the 

centre bisects the diameter and is equidistant from A, B and C (see Fig.1). 

What are the other ingredients? We need a theorem about isosceles triangles and 

about the sum of the angles in a triangle. The last raises the question of the sort of 

geometry in which the result holds. This is a Euclidean result. The standard argument 

also raises the question of the truth of the converse. Suppose that we have a triangle 

ABC whose right angle is at C. Then the angle at C is the sum of the angles at A and 

B; so we can construct a cevian CO which splits the angle at C so that angle ACO = 

angle CAO and angle BCO = angle CBO. This gives us a couple of isosceles triangles 

and so AO = BO = CO. Thus, C lies on a circle with centre O and diameter AB. This 

proof gives us a diagram that can be interpreted in two ways – one that gives us the 

result itself and the second that gives us its converse. 

 

Suppose we tweak the diagram of this argument in another way. Produce CO to some 

point X, and note that the exterior angle XOB is twice angle OCB and exterior angle 

XOA is equal to twice angle ACO (see Fig. 2). Then the straight angle AOB is twice 

angle ACB, making the latter angle right. Looking at the matter in this way reveals 

that it is part of a larger picture. By bending AB at O, we can now deduce, with the 

same argument, the result that angle ACB is half the angle subtended at the centre by a 

chord AB, so that the angle subtended by a chord at the major arc of a circle is 

constant (see Fig. 3). 
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Figure 1: Angle inscribed in a semi-circle 

 

In a similar way, it can be shown that the angle subtended at the minor chord is 

constant (and supplemental to the other angle). From here, it is a natural step to obtain 

some properties of concyclic quadrilaterals. This more general result is not contained 

in the statement of the theorem, but by looking at the elements of the proof, we can 

arrive at it. The next proof is the second transformation argument that involves a 

dilatation with factor 1/2 and centre B. This dilatation takes 𝐴 → 𝑂 and 𝐶 → 𝐸, the 

midpoint of chord CB. Now, E being the midpoint of chord CB means that OE right 

bisects it (this is basically a consequence of triangle COB being isosceles). 

Thus OE is perpendicular to CB. Now reverse the dilatation; since angles are 

preserved AC is perpendicular to CB, and we are done. This argument has quite a 

different flavor than the first one and introduces a symmetry element into the situation 

that is not apparent from the bald statement of the theorem. Thus the proof contains 

mathematical knowledge beyond mere deductive reasoning. There are some areas of 

mathematics, such as algebra, calculus and trigonometry that provide a general 

framework for proving results of a particular type. In using 

general techniques, we are situating the result among a category of those that can be 

handled in a specific way. This focuses attention on the particular characteristics that 

make the techniques applicable. For example, we can conceive of the situation of the 

proposition in the cartesian plane, the complex plane or two-dimensional vector space 

(see Fig. 4). The proposition contains elements that are capable of straightforward 

formulation in each of these areas. 

 
 

Figure 2: Extended CO 
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Figure 3: Bending AB at O 

 

 

In the cartesian plane, the circle can be described by a simple quadratic equation and 

the condition for perpendicularity of two lines involves their slopes. If we 

coordinatize A, B and C as (−1, 0), (1, 0) and (𝑥, 𝑦) where 𝑥2 + 𝑦2 = 1, then we can 

check that 1 plus the product of the slopes of AC and BC is 0. In the complex plane, 

where multiplication by 𝑖 corresponds to the geometric rotation through 90° about the 

origin, the proof becomes a matter of verifying that if A is taken to be −1, B as +1 and 

C as z where 𝑧𝑧̅̅̅ = 1 then (𝑧 − 1)/(𝑧 + 1) is a real multiple of 𝑧 − 𝑧̅ and so pure 

imaginary. Finally, the vector proof can be carried out with or without coordinates. In 

the latter case, the proof is particularly slick. Taking the centre of the circle as the 

origin of vectors, then (𝐶 − 𝐵) · (𝐶 − 𝐴) = 𝐶2  − 𝐶. (𝐴 + 𝐵) + 𝐴. 𝐵 = 0 since 𝐴 =
−𝐵 and 𝐶2 = 𝐵2 = 𝐴2  is the square of the radius of the circle. 

 

Some proofs reveal more than others; from some of the arguments, it can be quickly 

inferred that angle ACB is right if and only if AB is the diameter of a circle that 

contains C, so that the converse really is also built into the proof. 

 

 
 

Figure 4: Vector argument 
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In summing up the lesson of these case studies, one might consider that those students 

whose learning is most robust are likely to be those who have developed a 

multifaceted way of looking at mathematical facts. Their mathematical knowledge is 

rich with many connections and corroborations. One way of presenting our point in 

this paper is to say that the bald statement of results and practice of techniques in the 

classroom has little chance to foster this multifaceted view, while having to construct 

or follow well-chosen proofs, with the concomitant exposure to unfamiliar methods, 

tools, strategies and concepts that Rav has shown, can convey to the student a much 

richer understanding of mathematics. 

 

Several additional examples could have been presented, such as the many different 

proofs of the infinitude of primes, each resting on a particular technique; the hundreds 

of proofs of the Pythagorean theorem, each using a different method or technique; the 

many proofs of numerical results that may be proved by mathematical induction or by 

an algebraic technique such as the telescoping method. 

An example of the last is the finite sum of the series 

∑
1

𝑛(𝑛 + 1)

𝑁

𝑛=1

 

 

which can be treated as a telescoping sum, as follows: 

 

∑
1

𝑛(𝑛 + 1)

𝑁

𝑛=1

= ∑ (
1

𝑛
−

1

𝑛 + 1
)

𝑁

𝑛=1

 

 

= (1 −
1

2
) + (

1

2
−

1

3
) + ⋯ + (

1

𝑁
−

1

𝑁 + 1
) 

 

= 1 + (−
1

2
+

1

2
) + (−

1

3
+

1

3
) + ⋯ + (−

1

𝑁
+

1

𝑁
) −

1

𝑁 + 1
= 1 −

1

𝑁 + 1
 

 

 

CONCLUSION 

As discussed in this paper shown that proofs can extend mathematical knowledge by 

bringing to the fore new techniques and methods, and it has maintained in fact that for 

this reason proofs should be a primary focus of interest in mathematics. Argue that 

what is true of mathematics itself may well be true of mathematics education: In other 

words, that proofs could be accorded a major role in the secondary-school classroom 

precisely because of their potential to convey to students important elements of 

mathematical elements such as strategies and methods. 

It is important to call attention to the potential for exploiting this aspect of proof in the 

classroom. Mathematics educators have always made use of the fact that there are 

many different styles of proving, showing students how one can arrive at valid 

conclusions in different ways, using topic-specific moves, algebraic manipulations, 
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geometric concepts, dynamic geometry, arithmetical computations, computing and 

more. Nevertheless, educators have overlooked to a large extent the role of proof as a 

bearer of mathematical knowledge in the form of methods, tools, strategies and 

concepts that are new to the student and add to the approaches the student can bring to 

bear in other mathematical contexts.  

The adoption of the approach to proof which we have presented would require that 

proofs suitable for this teaching approach and for the secondary-school curriculum be 

assembled and polished and then be made available to teachers and curriculum 

planners. It would also necessitate research into the most effective ways to teach 

proofs with this new approach in mind. The approach to using proof which we have 

discussed here does not challenge in any way the accepted “Euclidean” definition of a 

mathematical proof (as a finite sequence of formulae in a given system, where each 

formula of the sequence is either an axiom of the system or is derived from preceding 

formulae by rules of inference of the system), nor does it challenge the teaching of 

Euclidean derivation itself. It points out, however, that the teaching of proof also has 

the potential to convey to students other important pieces of mathematical knowledge 

and to give them a broader picture of the nature of mathematics. In highlighting a 

sometimes unappreciated value of proof, it also gives educators an additional reason 

for keeping proof in the mathematics curriculum.  
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